
International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

Survey and Simulation based Performance
Analysis of TCP-Variants in terms of Throughput,

Delay and drop Packets over MANETs
Prakash B. Khelage Dr. Uttam Kolekar

 Asst. Professor Department of Information Technology Principal

 UMIT, SNDT Women's University, Mumbai-400049, India Smt. Indira Gandhi College of Engineering,

 prakashkhelage@rediffmail.com, Navi Mumbai-400709, India. uttamkolekar@gmail.com

Abstract—Transmission Control Protocol (TCP) is a reliable which maintains end-to-end senentics and it is one of the core of the internet

protocol (IP) suite responsible for transmission of internet traffic and very efficient for wired networks. However, experimental analysis and

research showed that, TCP’s congeation control algorithm performs poorly over Mobile Ad-Hoc Networks with degraded throughputs,

fairness services and energy consumption. In this paper we present the reviews and simulated result based comparision of TCP-Variants in

terms of throughput, delay and packet drop. Our result based analysis showed that, traditional TCP congestion control protocol fails in

MANET whereas Proactive and BWE based TCP-variants gives improved performance in terms of throughput, delay and packet drop.

Hence there is motivation for RTT and BWE based investigation and research desirable for adapting TCP over Mobile Ad-Hoc Networks.

Index Terms— TCP, Congestion Window, Congestion Control, Congestion Avidence, MANET, Bandwidth Estimate (BWE) , Round Trip

Time(RTT), Network simulator, throughput, delay, packet drop.

——————————  ——————————

1 INTRODUCTION

HE MANET is considered as promising communication
network in situations where rapid deployment and self-
configuration are essential. In ad hoc networks, nodes are

allowed to communicate with each other without any existing
infrastructure [3]. Here every node should also play the role of
a router. This kind of networking can be applied to scenarios
like conference room, disaster management, and battle field
communication and places where deployment of infrastruc-
ture is either difficult or costly.
The phenomenal growth experienced by the Internet over the
last decade has been supported by a wide variety of evolving
mechanisms to meet the requirements of emerging, demand-
ing applications. The basic TCP/IP protocol suite has been
instrumental in developing today’s Internet. In particular, TCP
has been successful due to its robustness in reacting dynami-
cally to changing network traffic conditions and providing
reliability on an end-to-end basis. This wide acceptance has
driven the development of many TCP applications, motivating
the extension of this protocol to wireless networks. These net-
works pose some critical challenges to TCP since it was not
originally designed to work in such complex environments,
where the level of bit error rate (BER) is not negligible due to
the physical medium. High mobility may further degrade the
end-to-end performance because TCP reduces its transmission
rate whenever it perceives a dropped packet.
This paper focused on studuing the impact of mobile ad hoc
environment characteristics on the throughput, delay and
packet drop with eight major TCP variants (Tahoe, Reno, New
Reno, Westwood, WestwoodNR, Vegas, Sack, Fack) over basic
validation network model such as congestion, link failure,
signal loss and interference as well as chain and grid network
scenario.

The reminder of the paper is organized as follows: brif ex-

plation with digram about MANET characteristics in section 2,
section 3 presents TCP congestion control algorithms along
with congestion window trace diagrams, section 4 explains
eight TCP variant with its Psudocode and problems, section 5
gives brif information about tools and technique used to gen-
erate results, section 6 presents basic validation model , simu-
lation screnario’s and obtained results, finally concluded with
the opinion of possible future work.

2 MANET CHARACTERISTICS

The main MANET characteristics that can cause packet loss
are: mobility [9] [10], wireless channel, and power constraints.

2.1 Mobility:-

 All devices in MANET are free to move, so an on-going con-
nection should be kept alive to support mobility. However,
once the host moves the topology will change and this may
lead to one of the following situations:

2.1.1 Route Failure

They are frequent events due to mobility in MANET. And it
needs to re-establish a new transmission route to adjust to the
topological changes. Once route failure occurs, it may accom-
pany with a frequent of route change and failure, packet reor-
dering in the sender and the receiver side, not to forget some
packets will drop in the way.

2.1.2 Network Partition

A network partition occurs when a node in a MANET moves
away from the network thereby causing an isolation of some
part of the network by breaking it into two isolated parts.
These isolated parts are called partitions.

T

775

IJSER

mailto:prakashkhelage@rediffmail.com
mailto:uttamkolekar@gmail.com

International Journal of Scientific & Engineering Research Volume 5, Issue 1, January-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

2.2 Wireless Channel:-

Mobile nodes use wireless channel as a medium to send and
receive data. However, it is well known that wireless channel
is weak, unreliable and unprotected from outside signals. In
other words, wireless channel prone the following complexi-
ties:

2.2.1 High Bit Error Rate

The use of wireless channel is vulnerable to errors due to sig-
nal attenuation, interference, obstacles and multipath fading.
These errors may generate packet loss within a very short du-
ration or receive corrupted packet at the receiver.

2.1.2 Contention

 The use of shared wireless channel limits the ability of a node
to send packets. Two types of contention:-
(i) Interflow contention which refers to the contention experi-
enced by a node due to transmission by nearby flow.
 (ii) Intraflow contention which refers to the contention within
same node due to the forward data transmissions and reverses
ACK transmission. Generally, contention may produce packet
loss and delay.

2.1.3 Hidden & Exposed Terminal

A typical hidden terminal situation is depicted in Fig. 3. Sta-
tions A and C have a frame to transmit to station B. Station A
cannot detect C’s transmission because it is outside the trans-
mission range of C. Station C (resp. A) Is therefore “hidden” to
station A (resp. C). Since the transmission areas of A and C are
not disjoint, there will be packet collisions at B. These colli-
sions make the transmission from A and C toward B.

Hidden Station Problem

Esposed Station Problem

Fig. 1 Hidden and Exposed Station Problem

 We show a typical scenario where the exposed terminal problem

occurs. Let us assume that node A and C are within B’s transmis-

sion range, and A is outside C’s transmission range. Let us also

assume that B is transmitting to A, and C has a frame to be trans-

mitted to D. According to the carrier sense mechanism, C senses a

busy channel because of B’s transmission. Therefore, station C

will refrain from transmitting to D, although this transmission

would not cause interference at A. The exposed station problem

may thus result in a reduction of channel utilization.

2.3 Power Constraints:-

Mobile node is generally a small device with a limited power
supply and processing power. However, each node acts as a
host and a router simultaneously because not all mobile nodes
communicate directly with each other and this requires an
additional energy. This imposes a route change or network
partition when node energy is low.

3 TCP CONGESTION CONTROL ALGORITHM

The congestion control algorithms which are used in TCP pro-

col such as slow start , congestion avoidance , fast retransmit

and fast recovery [1] [2] [12]are explained with congestion

Window trace diagram below.

3.1 Slow Start

Slow-start is one of the algorithms that TCP uses to control
congestion inside the network. It is also known as the expo-
nential growth phase. Slow start [2] is conducted in the begin-
ning of every TCP connection and its main purpose is to find
the maximum available bandwidth at which it can send data
without ca using the network to be congested. The Slow-Start,
improperly called like this, actually increases exponentially
the size of the congestion window. The purpose of Slow-Start
is to fill as soon as possible a transmission channel [3]. During
the exponential growth phase, slow-start works by increasing
the TCP congestion window each time the acknowledgment is
received. It increases the window size by the number of seg-
ments acknowledged. This happens until either an acknowl-
edgment is not received for some segment or a predetermined
threshold value is reached. If a loss event occurs, TCP assumes
that it is due to network congestion and takes steps to reduce
the offered load on the network. Once the threshold has been
reached, TCP enters the linear growth (congestion avoidance)
phase. At this point, the window is increased by 1 segment for
each RTT. This happens until a loss event occurs [1].

Slow Start Algorithm:

Initial: CWND = 1;

For (each packet Acked)

CWND++;

Until (congestion event/ CWND>SSTreshHold)

776

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 1, January-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

Fig. 2 TCP Congestion Window Trace

3.2 Congestion Avoidence

 If the receiver window is large enough, the slow start mecha-
nism described in the previous routers in between the hosts
will start discarding packets [2]. TCP interprets packet loss as
a sign of congestion, and when this happens TCP invokes the
Congestion Avoidance mechanism. This variable, SSTresh-
Hold, is the slow start threshold which TCP uses to determine
if slow start or congestion avoidance is to be conducted.

Congestion Avoidance Algorithm:
/* slow start is over and CWND>SSTreshHold */
every Ack:
CWND = CWND + (1/CWND)
Until (Timeout or 3 DUPACKs)

3.3 Fast Retransmit

 If an out-of-order segment is received TCP generates a so
called duplicate acknowledgment. This duplicate acknowl-
edgment is sent immediately from the receiver to the sender
indicating that a segment arrived out-of-order, and which
segment that was supposed to be received. Since it is not pos-
sible to know whether the duplicate acknowledgment was
caused by a lost segment or just reordering of segments, the
sender waits for three duplicate acknowledgments before re-
transmitting the segment. If this limit would have been lower,
this would increase the chance of reordered segments causing
duplicates to be created, and transmitted needlessly. The ad-
vantage of this mechanism is that TCP does not have to wait
for the retransmission timer to expire. It simply assumes that
three duplicate acknowledgments is a good indicator of a lost
segment [2].
If the congestion was indicated by duplicate acknowledge-
ments, the TCP sender goes into the Fast Retransmit mode to
retransmit what appears to be lost packet without waiting for
the retransmission timer to expire. Then, the sender sets the
SSTreshHold to half of the current congestion window and the
new congestion window to the new SSTreshHold plus the
number of received duplicate acknowledgements and enters
into the Fast Recovery phase [12].

Fig. 3 Fast retransmit

3.3 Fast Recovery

During Fast Recovery, the TCP New Reno distinguishes be-
tween a “partial” ACK and a “full” ACK. A full ACK
acknowledges all segments that were outstanding at the start
of fast recovery, while a partial ACK acknowledges some but
not all of this outstanding data. After fast retransmit is con-
duct congestion avoidance and not slow start is performed.
This behavior is called Fast Recovery [2] [12]. Fast recovery is
an algorithm allows for higher throughput under congestion,
especially when using large congestion windows. Receiving
three duplicate acknowledgments tells TCP more than the
expiration of the retransmission timer. Since the receiving,
TCP only can generate duplicate acknowledgments when it is
receiving other segments it is an indication that data still flows
between the different hosts, and that the congestion is not that
severe. By using this approach, skipping the slow start, the
TCP does not reduce the transfer rate unnecessarily much.

Fast Recovery Algorithm:
/* after fast retransmit; do not enter slow start */
SSTreshHold = CWND / 2;
CWND = SSTreshHold + 3;
each DACK received;
CWND ++;
Send new packet if allow;
After receiving an Ack:
if partial Ack;
Stay in fast recovery;
Retransmit next lost packet (one packet per RTT);
if Full Ack;
CWND = SSTreshHold;
Exit fast recovery;
Invoke Congestion Avoidance Algorithm;
When Timeout:
SSTreshHold = CWND /2;
CWND = 1;
Invoke Slow Start Algorithm;

777

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 1, January-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

4 TCP VARIANTS

4.1 TCP Tahoe

Early TCP implementations followed a go-back- model using
cumulative positive acknowledgment and requiring a re-
transmit timer expiration to re-send data lost during transport
[6] In the process of trying to improve the original TCP three
traffic management mechanisms slow start, congestion avoid-
ance and fast retransmit were introduced to the original TCP
and the new TCP version was named as TCP Tahoe.TCP Ta-
hoe is the TCP variant developed by Jacobson in 1988. It uses
Additive Increase Multiplicative Decrease (AIMD) algorithm
to adjust window size. It means that increases the congestion
window by one for successful packet delivery and reduces the
window to half of its actual size in case of data loss or any de-
lay only when it receives the first negative acknowledge. In
case of timeout event, it reduces congestion window to 1 MSS
[7].
• TCP Tahoe uses packet loss probability to adjust the conges-
tion window size.
• During Slow Start phase, TCP Tahoe increases window size
exponentially i.e. for every acknowledgement received, it
sends two packets.
• During Congestion Avoidance, it increases the window size
by one packet per Round Trip Time (RTT) so as to avoid con-
gestion.
• In case of packet loss, it reduces the window size to one and
enters in Slow Start phase.

Psudocode for Tahoe:

Initially:
CWND = 1;
SSTreshHoldHold = AWS; /* when TCP begins for the first time*/

New ack received:
If (CWND < SSTreshHold)
/* Slow Start*/
CWND = CWND + 1;
Else
/* Congestion Avoidance */
CWND = CWND + 1/CWND;

Timeout:
/* Multiplicative decrease */
SSTreshHold = CWND/2;
CWND = 1;

Problems
Due to automatic set back to slow start mode of operation
with initial congestion window of one every time packet loss
is detected, TCP Tahoe does not prevent the communication
link from going empty. Hence this may have high cost in high
bandwidth product link.

4.2 TCP Reno

TCP Reno retains the basic principle of Tahoe, such as slow
starts and the coarse grain retransmit timer [12]. However it

adds some intelligence over it so that lost packets are detected
earlier and the pipeline is not emptied every time a packet is
lost. Reno requires that we receive immediate acknowledge-
ment whenever a segment is received. The logic behind this is
that whenever we receive a duplicate acknowledgment, then
his duplicate acknowledgment could have been received if the
next segment in sequence expected, has been delayed in the
network and the segments reached there out of order or else
that the packet is lost. If we receive a number of duplicate
acknowledgements then that means that sufficient time have
passed and even if the segment had taken a longer path, it
should have gotten to the receiver by now. There is a very
high probability that it was lost. So Reno suggests Fast Re-
Transmit. Whenever it receives 3 duplicate ACK‘s, take it as a
sign that the segment was lost, so re-transmit the segment
without waiting for timeout. Thus it manages to re-transmit
the segment with the pipe almost full. Another modification
that Reno makes is in that after a packet loss, it does not re-
duce the congestion window to 1. Since this empties the pipe.
It enters into an algorithm which is called Fast-Recovery.

Psudocode for Reno:

Step 1: Initially

0<CWND<= min (4*mss, max (2*mss, 4380 bytes))
SSThreshholdHold = max (CWND/2, 2*MSS)

Step 2: Slow Start Algorithm (Exponential Increases)
if (receive acks && CWND SSThreshholdHold)
CWND = CWND+1;

Step 3: Congestion Avoidance Algorithm (Additive increase)
if (receive ACKs) {
if (CWND > SSThreshholdHold)
CWND = CWND + (segsize * segsize / CWND);
else
CWND = CWND + 1}

Step 4: Fast Retransmission

if (congestion) {
if (Receive same Acks 3 time or retransmission time out) {
SSThreshholdHold = CWND/2;
Retransmit lossed packet

Problems:
Reno performs very well when the packet losses are small.

But when we have multiple packet losses in one window then
it doesn’t perform too well and its performance is almost the
same as Tahoe under conditions of high packet loss. The rea-
son is that it can only detect a single packet loss. If there is
multiple packet drops then the first info about the packet loss
comes when sender receive the duplicate ACK’s. But the in-
formation about the second packet which was lost will come
only after the ACK for the retransmitted first segment reaches
the sender after one RTT. Another problem is that if the wid-
ow is very small when the loss occurs then sender would nev-
er receive enough duplicate acknowledgements for a fast re-
transmit and have to wait for a coarse grained timeout. Thus it
cannot effectively detect multiple packet losses.

778

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 1, January-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

4.3 TCP New Reno

The experimental version of TCP Reno is known as TCP New
Reno [8]. It is slightly different than TCP Reno in fast recovery
algorithm. New Reno is more competent than Reno when
multiple packets losses occur. New Reno and Reno both corre-
spond to go through fast retransmit when multiple duplicate
packets received, but it does not come out from fast recovery
phase until all outstanding data was not acknowledged . It
implies that in New Reno, partial ACK do not take TCP out of
fast recovery but they are treated as an indicator that the
packet in the sequence space has been lost, and should be re-
transmitted. Therefore, when multiple packets are lost from a
single window of data, at this time New Reno can improve
without retransmission time out. The retransmitting rate is
one packet loss per round trip time until all of the lost packets
from that window have been transmitted. It exist in fast recov-
ery till all the data is injected into network, and still waiting
for an acknowledgement that fast recovery was initiated.

The critical issue in TCP New Reno [8] is that it is capable
of handling multiple packet losses in a single window. It is
limited to detecting and resending only one packet loss per
round -trip-time. This insufficiency becomes more distinct as
the delay-bandwidth becomes greater.

However, still there are situations when stalls can occur if
packets are lost in successive windows, like all of the previous
versions of TCP New Reno which infer that all lost packets are
due to congestion and it may therefore unnecessarily cut the
congestion window size when errors occur.There are [5] some
steps of congestion control for New Reno transmission control
protocol.

Psudocode for New Reno:

Step 1: Initially

0<CWND<= min (4*mss, max (2*mss, 4380 bytes))
SSThreshholdHold = max (CWND/2, 2*MSS)

Step 2: Slow Start Algorithm (Exponential Increases)
if (receive acks && CWND SSThreshholdHold)
CWND = CWND+1;

Step 3: Congestion Avoidance Algorithm (Additive increase)
if (receive ACKs) {
if (CWND > SSThreshholdHold)
CWND = CWND + (seg_size * seg_size / CWND);
else
CWND = CWND + 1}

Step 4: Congestion Detection Algorithm (Multiplicative De-
crease): Fast Retransmission and Fast Recovery

if (congestion) {
if (Receive same Acks 3 time or retransmission time out) {
SSThreshholdHold = CWND/2;
if (Retransmission time out) {
CWND = initial;
exit and call Slow Start step;
else /* Receive same Acks 3 time*/
CWND = SSThreshholdHold;
exit and call congestion avoidance step}}}
Problems:

Problem with New Reno is that the constraint of retransmit-
ting at most one loss packet per RTT results in substantial de-
lay in retransmitting the later dropped packets in the window.
Thus the available bandwidth is not effectively utilized.

4.4 TCP Selective Acknowledgment (Sack)

The Selective Acknowledgment (SACK) mechanism is an ex-
tension to Transmission Control Protocol’s (TCP) ACK mech-
anism, allows a data receiver to explicitly acknowledge ar-
rived out-of-order data to a data sender. When using SACKs, a
TCP data sender need not retransmit SACKed data during the
loss recovery period. Previous research showed that SACKs
improve TCP throughput when multiple losses occur within
the same window. The success of SACK-based loss recovery
algorithm is proportional to the SACK information received
from the data receiver [9].

With selective acknowledgments, the data receiver can in-
form the sender about all segments that have arrived success-
fully, so the sender need retransmit only the segments that
have actually been lost [6]. TCP with ‘Selective Acknowledg-
ments’ is an extension of TCP Reno and it works around the
problems face by TCP Reno and TCP New-Reno, namely de-
tection of multiple lost packets, and re-transmission of more
than one lost packet per RTT. SACK retains the Slow-Start
and Fast Re-Transmit parts of Reno. It also has the coarse
grained timeout of Tahoe to fall back on, in case a packet loss
is not detected by the modified algorithm. TCP-Sack requires
that segments not be acknowledged cumulatively but should
be acknowledged selectively. Thus each ACK has a block
which describes which segments are being acknowledged.
Thus the sender has a picture of which segments have been
acknowledged and which are still outstanding. Whenever the
sender enters fast recovery, it initializes a variable pipe which
is an estimate of how much data is outstanding in the net-
work, and it also set CWND to half the current size. Every
time it receives an ACK it reduces the pipe by 1 and every
time it retransmits a segment it increments it by 1. Whenever
the pipe goes smaller than the CWD window it checks which
segments are not received and send them. If there are no such
segments outstanding then it sends a new packet. Thus more
than one lost segment can be sent in one RTT.

Problems:
The biggest problem with SACK is that currently selective
acknowledgements are not provided by the receiver to im-
plement SACK we’ll need to implement selective acknowl-
edgment which is not a very easy task and Requires modifica-
tion to the acknowledgement procedures at both sender and
receiver sides. Energy consumption is higher then new reno
due to additional overheads.
4.5 TCP Westwood

TCP Westwood proposes an end-to-end bandwidth estimation
algorithm based on TCP Reno. TCP Westwood implements
slow start and congestion avoidance phases as TCP Reno, but
instead of halving the congestion window size as in TCP Reno
when congestion happens, TCP Westwood adaptively esti-
mates the available bandwidth and sets the congestion win-
dow size and slow start threshold accordingly to improve the
link utilization. In TCP Westwood, packet loss is indicated by

779

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 1, January-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

the reception of 3 duplicated acknowledgements (DUPACKs)
or timeout expiration. When 3 DUPACKs are received, TCP
Westwood sets SSTreshHold and CWND as follows:

Psudocode for Westwood:

if (n DUPACKs are received)
if (CWND>SSThreshhold) /* congestion avoid. */
SSThreshhold = BWE*RTTmin;
CWND = SSThreshhold;
endif
if (CWND<SSThreshhold) /*slow start */
SSThreshhold= BWE*RTTmin
if (CWND > SSThreshhold)
CWND = SSThreshhold
endif
endif
endif

Where the seg_size is the length of the TCP segments and

RTTmin is the minimum RTT experienced. BWE is the esti-
mated available bandwidth. It is assumed in TCP Westwood
that when 3 DUPACKs are received in the congestion avoid-
ance phase, the available bandwidth is fully utilized. So the
values SSTreshHold and CWND should reflect the estimated
bandwidth (BE).

If a packet loss is indicated by timeout expiration, TCP
Westwood sets SSTreshHold and CWND as follows:

if (coarse timeout expires)
if (CWND>SSThreshhold) /* congestion avoid. */
SSThreshhold = BWE*RTTmin;
if (SSThreshhold < 2)
SSThreshhold = 2;
CWND = 1;
else
CWND = BWE*RTTmin;
endif
endif
if (CWND<SSThreshhold) /* slow start */
SSThreshhold = BWE*RTTmin;
if (SSThreshhold < 2)
 SSThreshhold = 2;
CWND = 1;
else
CWND = BWE*RTTmin;
endif
endif
endif

This sets the CWND to 1 and SSTreshHold to BWE after the
timeout event and then the TCP Reno behavior continues. In
TCP Westwood, the setting of SSTreshHold and CWND is
based on the bandwidth estimation, which is obtained by
measuring the rate of the acknowledgments and collecting the
information of the amount of packets delivered to the receiver
in the ACK. Samples of bandwidth are computed as the
amount of packet delivered divided by the inter-arrival time

between two ACKs. Those sample bandwidth estimates are
then filtered to achieve an accurate and fair estimation. TCP
Westwood modifies the Additive Increase and Multiplicative
Decrease (AIMD) in TCP Reno and adaptively sets the trans-
mission rates to remove the oscillatory behaviour of TCP Reno
and to maximize the link utilizations. But this also causes TCP
Westwood to degrade the performance of TCP Reno connec-
tions when they coexist in the network [12].
Problems:
Perform poorly if it estimates incorrect bandwidth because of
unpredictability in the behaviour of the bandwidth estimation
scheme used in TCP Westwood. Changes in the inter-arrival
times of the acknowledgements cause improvement or wors-
ening of the throughput in rather unpredictable ways. Addi-
tionally, the sensitivity of TCP Westwood AckdInterval is var-
iable.
4.6 TCP WestwoodNR

 In TCP WestwoodNR [13] the sender continuously computes
the connection Bandwidth Estimate (BWE) which is defined as
the share of bottleneck bandwidth used by the connection.
Thus, BWE is equal to the rate at which data is delivered to the
TCP receiver. The estimate is based on the rate at which ACKs
are received and on their payload. After a packet loss indica-
tion, (i.e, reception of 3 duplicate ACKs, or timeout expira-
tion). The sender resets the congestion window and the slow
start threshold based on BWE. More precisely, CWND=BWE x
RTT. To understand the rationale of TCP-WNR, note that BWE
varies from flow to flow sharing the same bottleneck; it corre-
sponds to the rate actually achieved by each individual flow.
Thus, it is a FEASIBLE (i.e. achievable) rate by definition. Con-
sequently, the collection of all the BWE rates, as estimated by
the connections sharing the same bottleneck, is a FEASIBLE
set. When the bottleneck becomes saturated and packets are
dropped, TCP-WNR selects a set of congestion windows that
correspond exactly to the measured BWE rates and thus re-
produce the current individual throughputs. The solution is
feasible, but it is not guaranteed per se to be “fair share.” An
additional property of this scheme, described in Section III,
drives the rates to the same equilibrium point and makes it
“fair share” under uniform propagation delays and single bot-
tleneck assumptions. Another important element of this pro-
cedure is the RTT estimation. RTT is required to compute the
window that supports the estimated rate BWE. Ideally, the
RTT should be measured when the bottleneck is empty. In
practice, it is set equal to the overall minimum round trip de-
lay (RTTmin) measured so far on that connection (based on
continuous monitoring of ACK RTTs). A packet loss is indi-
cated by (a) the reception of3 DUPACKs, or (b) a coarse
timeout expiration. In case the loss indication is 3 DUPACKs,
TCP-WestwoodNR sets CWND and SSThreshhold as follows:

Psudocode for WestwoodNR:

If (3 DUPACKs are received)
SSThreshhold = (BWE * RTTmin) / seg_size;
if (CWND > SSThreshhold) /* congestion avoid. */
CWND = SSThreshhold;
endif

780

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 1, January-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

endif

In case a packet loss is indicated by timeout expiration,

CWND and SSThreshhold are set as follows:

if (coarse timeout expires)

CWND = 1;

SSThreshhold = (BWE * RTTmin) / seg_size;

if (SSThreshhold < 2)

SSThreshhold = 2;

endif;
endif
Problems:
 This variant cann’t distinguishes between buffer overflow and
random losses, Performs poorly if it estimates incorrect Band-
width. The performance of TCP WestwoodNR is strongly im-
pacted when the number of lost ACKs increases, with the in-
crease of BER value.

4.7 TCP Vegas

 Bandwidth Estimation scheme used by TCP Vegas is more
efficient than other TCP variants. This scheme makes band-
width estimation by using the difference between the expected
flow rates and the actual flow rates. TCP Vegas was intro-
duced in 1994 as an alternative to TCP Reno and its implemen-
tation and tests showed that it achieves better throughput than
TCP Reno. TCP Vegas’ bandwidth estimation differs from that
in TCP Reno. Unlike TCP Reno, which uses packet loss as the
indication of network congestion, TCP Vegas uses the differ-
ence between the estimated throughput and the measured
throughput as the measure of congestion. TCP Vegas records
the smallest measured round trip time as BaseRTT and com-
putes the available bandwidth as:

ExpectedBandwidth = WindowSize/ BaseRTT

Where as the Window Size is the current window size. Dur-

ing the packet transmission the round trip time (RTT) of pack-
ets are recorded. The actual throughput is calculated as:

Actual Bandwidth = WindowSize/ RTT

The difference between the Expected Bandwidth and Actu-

al Bandwidth is used to adjust the Window Size.

Diff = Expected Bandwidth - Actual Bandwidth

Two values α and β (0 ≤ α < β) are defined as the thresh-

olds. If Diff< α , the window size is increased during the next
RTT; If Diff> β , then the window size is decreased during the
next RTT. Otherwise, the window size is unchanged. The goal
of TCP Vegas is to keep a certain number of packets or bytes
in the queues of the network [1]. If the actual throughput is
smaller than the expected throughput, TCP Vegas takes this as
indication of network congestion, and if the actual throughput
is very close to the expected throughput, it is suggested that
the available bandwidth is not fully utilized, so TCP Vegas
increases the window size.

This mechanism used in TCP Vegas to estimate the availa-

ble bandwidth does not purposely cause any packet loss.
Hence the oscillatory behavior is removed and a better
throughput is achieved. Retransmission mechanism used by
TCP-Vegas is more efficient as compared to TCP-Reno as it
retransmits the corresponding packet as soon as it receives a
single duplicate ACK and does not wait for three ACKs. TCP-
Vegas as compared to TCP-Reno is more accurate and is less
aggressive, thus it does not reduce its CWND unnecessarily.

Problems:
It has problems when packets do not follow the same route
and when large delays are present. When routes change for a
certain TCP Vegas flow, the BaseRTT recorded from the pre-
vious route is no longer accurate; this affects the accuracy of
ActualBandwidth and subsequently influences the perfor-
mance of TCP Vegas. TCP Vegas could become unstable when
there is large network delay for a flow; later established con-
nections cannot get a fair share of the bandwidth, and when
they coexist with TCP Reno connections, TCP Reno connec-
tions use most of the bandwidth.

4.8 TCP Fack

The development in TCP SACK with Forward Acknowledge-
ment is identified as TCP FACK [1]. The utilization of TCP
FACK is almost identical to SACK but it establishes a little
enhancement evaluated to it. It uses SACK option to better
estimate the amount of data in transit. TCP FACK introduces a
better way to halve the window when congestion is detected.
When CWND is immediately halved, the sender stops trans-
mitting for a while and then resumes when enough data has
left the network. In this one RTT can be avoided when the
window is gradually decreased .When congestion occurs; the
window should be halved according to the multiplicative de-
crease of the correct CWND. Since the sender identifies con-
gestion at least one RTT after it happened, if during that RTT
it was in slow start mode, then the current CWND will be al-
most double than CWND when congestion occurred. There-
fore, in this case, CWND is first halved to estimate the correct
CWND that should BWE further decreased.

5 TOOLS AND TECHNIQUE

5.1 NS2 (Network simulator version 2)

NS2 is a discrete event simulator targeted at networking re-
search. Provides substantial support for simulation of TCP,
routing, and multicast protocols over wired and wireless (local
and satellite) networks. It is primarily UNIX based.

 Fig. 4 NS2 Implementation

781

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 1, January-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

In this paper validation of basic network model and simula-
tion of different network scenario’s done using ns2, because it
is scientifically verified and recommended by research com-
munity worldwide.

5.2 Gnu plot

 Gnu plot is a command-driven interactive function plotting pro-
gram. It can be used to plot functions and data points in both
two- and three-dimensional plots in many different formats. It is
designed primarily for the visual display of scientific data.
It is software for making 2D and 3D graphs from data and func-
tions. Gnu plot supports lots of output formats, including drivers
for many printers, (La) TeX, (x) fig, Postscript, and much more. It
is frequently used for publication-quality graphics as well as edu-
cation. The program runs on all major computers and operating
systems such as GNU/Linux, UNIX, Microsoft Windows, Mac
OS, and others. Gnuplot can produce output directly on screen,
or in many formats of graphics files, including Portable Network
Graphics (PNG), Encapsulated PostScript (EPS), Scalable Vector
Graphics (SVG), JPEG and many others. The program can be
used both interactively and in batch mode using scripts. The pro-
gram is well supported and documented.
Gnuplot is used as the plotting engine of GNU Octave, Maxima
and gretl, and it can be used from various scripting languages,
including Perl, Python, Java, Ruby, Ch, and Smalltalk.

5.3 Edraw Max

 Edraw Max, vector-based diagramming software, allows us-
ers to create flowcharts, organizational charts, workflow dia-
grams, software diagrams, network diagrams and more.
Edraw's ease of use makes it particularly suitable for users
who need to create professional quality drawings quickly and
simply, without having to invest time in learning to use a
complex application.
 It enables students, teachers and business professionals to
reliably create and publish kinds of diagrams to represent any
ideas so we have used Edraw Max for drowing the various
diagrams.

5.4 AWK scripting language

The AWK utility is an interpreted programming language typ-
ically used as a data extraction and reporting tool. It is a
standard feature of most Unix-like operating systems.
AWK is a language for processing text files. A file is treated as
a sequence of records, and by default each line is a record.
Each line is broken up into a sequence of fields, so we can
think of the first word in a line as the first field, the second
word as the second field, and so on. An AWK program is of a
sequence of pattern-action statements. AWK reads the input a
line at a time. A line is scanned for each pattern in the pro-
gram, and for each pattern that matches, the associated action
is executed. In our simulation we have used AWK programs
to process and obtain result fromtrace and NAM file.

6 SIMULATION SCENARIO AND OBTAINED RESULTS

6.1 Basic Validation Model

6.1.1 Network Congestion Scenario
 In this scenario, we create a congested node at the middle of the

five-node topology by generating three TCP data traffic flows
that must pass by this intermediate node to reach the other com-
municating end. One should also note that, different levels of
data

 Fig. 5 Congestion Network Scenario

Fig. 5 Histogram of throughput, delay and packet drop of

 Different tcp variants in congestion network scenario

TABLE 1 Values of Congestion Scenario

Congestion can be generated by controlling the number of
TCP data flows crossing this particular network node at a cer-
tain time. The congested network is tested using Tcl script
with different TCP variants as traffic agent and ploted histo-
gram which is showing throughput, delay and drop packets

Variant Throughput Delay Drop Packet

Tahoe 371.54 491.632 600

Reno 371.25 482.392 572

NewReno 370.96 489.4 631

Westwood 371.70 506.764 594

WestwoodNR 371.70 456.783 562

Vegas 192.35 122.535 562

Sack 367.49 451.994 588

Fack 362.81 445.309 555

782

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 1, January-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

for each variant.

6.1.2 Link failure Scenario
 In this model we force TCP to change its communication path
way by moving one intermediate node which acts as router
out of signal reception range between the communicating end
points. In addition, it implies routes with different number of
hops. Thus, each time TCP changes the communication route,
the characteristics of the path between the communicating
nodes changes. It is obvious that the choice and the establish-
ment delay of the new route will be dependent on the imple-
mented ad hoc routing protocol. Packet losses and delay
changes will also be implied by the link loss and the new cho-
sen route. We notice that the effect of such networks nodes’
mobility can be represented by the link failure scenario de-
scribed above as it is the most direct consequence of mobility.

Fig. 5 Link failure Scenario in Ad-Hoc Network

Fig. 6 Histogram of throughput, delay and packet drop of
 Different tcp variants in Link failure Network Scenario

TABLE 2 Values of Link Failure scenario

6.1.3 Signal Loss Scenario in Network
This scenario illustrates the situation where the wireless signal
is not stable. The communicating nodes loose the connection
due to signal loss and resume the communication when the
signal comes back. Signal losses are generated by moving one
of the intermediate nodes out of the radio range of its connec-
tion neighbors. This scenario created using three nodes end
node acts as sender and receiver and intermediate node as
router. Transmission of ftp traffic source flow through an in-
termediate node, Intermediate node moves away for few sec-
ond so signal loss occurs between source and destination, after
few second intermediate node moves at original place and
again retransmission starts.

 Fig. 7 Signal loss Scenario in Ad-Hoc Network

TABLE 3 Value of signal loss scenario

Variant Throughput Delay Drop Packet

TCP 374.09 226.1 17

Reno 374.09 226.1 17

New Reno 374.09 226.1 17

Westwood 374.09 226.1 17

WestwoodNR 374.09 226.1 17

Vegas 193.36 39.093 1

Sack 374.09 226.1 17

Fack 374.09 226.1 17

Variant Throughput Delay Drop Packet

Tahoe 126.00 242.009 42

Reno 127.52 229.244 42

NewReno 48.99 242.241 27

Westwood 124.90 243.186 45

WestwoodNR 125.61 232.455 41

Vegas 93.94 55.8684 20

Sack 126.20 229.576 43

Fack 146.16 217.699 40

783

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 1, January-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

 Fig. 6 Histogram of throughput, delay and packet drop of
 Different tcp variants in Signal Loss Network Scenario

6.1.4 Interference Scenario in Ad-hoc Network
 In this scenario, two TCP connections are established in paral-
lel.The main TCP connection is disturbed by the interferences
generated by the second TCP connection. Indeed, the node
acting as forwarder for the main TCP connection is placed
within the interference range of the second TCP connection
sender. So, this situation creates interference and thus data
packet losses. Interference scenario in wireless environment
created using two traffic sources; Transmission of second traf-
fic source will interfere to the first traffic source.

TABLE 4 Values Interference Scenario

Variant Throughput Delay Drop Packet

Tahoe 736.51 236.228 1861

Reno 736.51 236.228 1861

New Reno 736.51 236.228 1861

Westwood 736.51 236.228 1861

WestwoodNR 736.51 236.228 1861

Vegas 380.24 38.713 1905

Sack 736.51 236.228 1861

Fack 736.51 236.228 1861

Fig. 7 Intetrference Scenario in Ad-Hoc Network

Fig. 8 Histogram of throughput, delay and packet drop of
 Different tcp variants in Interference Network Scenario

TABLE 5 Simulation Parameters Values

Parameter Values

Channel Type Wireless channel

 Radio Propagation Model Two Ray ground

Queue type Droptail/PriQue

Max. packet(buffer size) 50

Network interface Wirelessphy

MAC Protocol 802.11

Data Rate 1 Mbps

Transmission Radius 250

Interference Radius 550

Packet size 1000 bytes

Routing protocol AODV, DSDV

Simulation Time 150 s

Value x 700

Value y 500

Agent trace ON

Mac trace OFF

Router trace ON

Movement trace ON

6.1 Main Simulation Scenarios

6.2.1 Chain multi-hop Network
The chain network created with five hopes and six nodes to
conduct simulation experiments.

Fig. 9 Chain topology in multihop Ad-Hoc Network

784

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 1, January-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

The network consists of variable length chain of static nodes,
placed at a distance of 200m from one another. FTP traffic is
transferred between the first and last node of the chain shown
in (Fig. 9). During the simulation different TCP variant at-
tached as agent at the transport layer for the same scenario.
One FTP connection kept active at a time and sequential TCP
connection are initiated and terminated.

Fig. 10 Histogram of throughput, delay and packet drop of

 Different tcp variants in Chain Topology

TABLE 6 Values for Chain Topology

Variant Throughput Delay Drop Packet

Tahoe 253.03 333.966 173

Reno 253.03 333.966 243

New Reno 253.03 333.966 243

Westwood 253.03 333.966 243

WestwoodNR 253.03 333.966 243

Vegas 130.86 57.637 149

Sack 253.03 333.966 243

Fack 253.03 333.966 243

6.2.2 Grid multi-hop Ad-Hoc Network

Fig. 11 Grid topology in multihop Ad-Hoc Network

Fig. 11 shows a static grid Ad-hoc network as experiment

topologycal network with 16 nodes. In a stationary environ-
ment without mobility, the distance between two adjacent
nodes is set to be 200 m, and the transmission and interference
radii are set to 250 and 550 m, respectively. In each row, a TCP
connection is assumed to set up from the left end node to the
right end, and similarly, in each column, a TCP connection is
assumed to set up from the top end node to the bottom end
node.

Fig. 12 Histogram of throughput, delay and packet drop of

 Different tcp variants in Chain Topology

TABLE 7 Values for Grid Topology

Variant Throughput Delay Drop Packet

Tahoe 488.35 1345.12 5

Reno 488.35 1345.12 5

NewReno 488.35 1345.12 5

Westwood 495.59 1339.02 12

WestwoodNR 478.16 1285.47 4

Vegas 222.78 171.355 0

Sack 497.10 1113.29 63

Fack 504.30 1350.66 14

Fig. 13 Throughput plot fop TCP variants in all
Network scenario

785

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 1, January-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

7 CONCLUSION

 Analysis of various TCP variants has been carried out based on

the problems and proposed enhancements to find out pros and

cons of each variant. It reveals that there is no single variant

which can handle all problems such as congestion, link failure,

signal loss, interference. Also it neither gives optimized through-

put nor performs efficiently over chain and grid network scenari-

os. Most of these variants are best in particular scenarios whereas

the performance is lagging in some other MANET scenarios.

Referring to the ns2 based simulated results, it is observed that

proactive and bandwidth estimation based variants shows better

handling to the mobility and frequent link failures whereas many

of the TCP-variants show poor handling to changing network

conditions. Thus it can be concluded that; the area is still open for

research and the TCP-variants which are proactive and based on

bandwidth estimation are more effective. Hence these parameters

need to be taken into consideration for further investigation to

obtain unique, reliable, robust, efficient TCP-variant and need to

be further explored to make it suitable for adapting over mobile

ad hoc networks.

ACKNOWLEDGMENT

I am deeply thankful to my M. Tech. Mentor Dr. Vijay
Raisinghani who has boosted morale, confidence and taught
how to do research, my friend Prof. Sanjay Sange for constant-
ly encouragement, motivation and helps for best quality work.
at last but not least to my father who has shown such a glori-
ous days.

REFERENCES

[1] Pratap K. Meher and P. J. Kulkarni, “Analysisand and Comparision

of Performance of TCP-Vegas in MANET,” IEEE International Con-

ference on Communication systems and network Technologies, pp.

67-70, 2011.

[2] Mandakini Tayade, Sanjeev Sharma,”review of different tcpVariants

in ad-hoc networks,” International journal of Engineering Science

and Technology, Vol.3 No. 3 pp. 1906-1913, March 2011.

[3] Marc Greis‘Tutorial for the UCB/LBNL/VINT Network Simulator

―ns‖. http://www.isi.edu/nsnam/ns/tutorial/

[4] B. Qureshi, M. Othman and N.A.W. Hami,”Progress in various TCP

variants,” IEEE, February 2009.

[5] Dhananjay Bisen and Sanjeev Sharma,”Improve Performance of TCP

New Reno over mobile Adhoc Network using ABRA,” International

Journal of wireless & Mobile Network, Vol. 3, No. 2, pp. 102-111,

April 2011.

[6] Kevin Fall and Sally Floyd, “Simulation-based Comparisons of Ta-

hoe, Reno, and SACK TCP,” ACM Computer Communication Re-

view, pp. 5-21, 26(3) (1996).

[7] Jitender Sharma and Amit Kumar Garg “Analysis of Tahoe: A TCP

Variant” International Journal of Engineering and Advanced Tech-

nology (IJEAT) ISSN: 2249 – 8958, Volume-1, Issue-2, December 2011.

[8] Saleem-ullah Lar, Xiaofeng Liao and Songtao Guo, “Modeling TCP

NewReno Slow Start and Congestion- Avoidance using Simulation

Approach,” International Journal of Computer Science and Network

Security, VOL.11 No.1, January 2011. Technical Report IAM-02-003,

Univ. of Bern, July 2001.

[9] Ahmod Al hambli et al.,”A survey of TCP over Adhoc Networks,”

Communications Surveys & Tutorials, IEEE, vol. 7 pp. 22-36, 2005.

[10] Adib M. Monzer Habbal,“Loss Detection and Recovery Techniques

for TCP in mobile Adhoc Network,”IEEE, second international Con-

ference on Network Application, protocols and services, pp. 48-54,

2010.

[11] Dinesh C. Dobhal and Rakesh Sharma,”Simulation base analysis of

TCP Reno and TCP Westwood over IEEE 802.11 wireless Adhoc

Networks,” International Journal of Computer Science and Commu-

nication, vol. 1, No. 2, pp. 383-386, December 2010.

[12] Suhas Waghmare et al,”Comparative Analysis of different TCP vari-

ants in a wireless environment,” IEEE, pp. 158-162, March 2011.

[13] Amit M. Sheth et al, “Analysis Of TCP WestwoodNR Protocol in

[14] Congested and Lossy Network,” International Journal of Engineering

Trends and Technology- Volume4 Issue3, pp 477-482, 2013.

 AUTHORS PROFILE

 Prakash B. Khelage received his B.E.
in Electronics and Telecommunica-
tion Engineering from Dr. Babasaheb
Ambedkar Marathwada University
Aurangabad, M.Tech in information
Technology from NMIMS University
Mumbai, Maharastra, India. He is
currently working as Assistant Pro-
fessor with UMIT, SNDT Women’s
University. He has 13 years of experi-
ence in industrial as well as educa-
tional field; His research interest in-

cludes Ad Hoc Networks, Mobile Computing, Wireless Net-
works, Co-operative Communication Networks and Network
Security. He has also interest in Computer Architecture de-
sign, Cloud Computing and Data Mining.

Uttam D. Kolekar received his B.E. in Electronics and Tele-
communication Engineering, M.E. in
Electronics from Shivaji University,
Kolhapur and Awarded Ph. D. in elec-
tronics from Bharati Vidhyapith Pune,
Maharastra, India. He is currently
working as Principal with Smt. Indira
Gandhi College of Engineering, Mum-
bai University. He has more than 20
years of experience in educational in-
stitution; His research interest includes

Ad Hoc Networks, Mobile Computing, Wireless Networks,
Neural Network and Co-operative Communication Networks.
He has published over 30 National and International Jurnals &
conferences various papers accros India and other countries.

786

IJSER

